Please enter a valid full or partial manufacturer part number with a minimum of 3 letters or numbers

    FLOATING-POINT REPRESENTATION OF NUMBERS Search Results

    FLOATING-POINT REPRESENTATION OF NUMBERS Result Highlights (5)

    Part ECAD Model Manufacturer Description Download Buy
    TMPM4GQF15FG Toshiba Electronic Devices & Storage Corporation Arm Cortex-M4 processor with FPU Core Based Microcontroller/32bit/P-LQFP144-2020-0.50-002 Visit Toshiba Electronic Devices & Storage Corporation
    TMPM4GRF20FG Toshiba Electronic Devices & Storage Corporation Arm Cortex-M4 processor with FPU Core Based Microcontroller/32bit/P-LQFP176-2020-0.40-002 Visit Toshiba Electronic Devices & Storage Corporation
    TMPM4KMFWAFG Toshiba Electronic Devices & Storage Corporation Arm Cortex-M4 processor with FPU Core Based Microcontroller/32bit/P-LQFP80-1212-0.50-003 Visit Toshiba Electronic Devices & Storage Corporation
    TMPM4MMFWAFG Toshiba Electronic Devices & Storage Corporation Arm Cortex-M4 processor with FPU Core Based Microcontroller/32bit/P-LQFP80-1212-0.50-003 Visit Toshiba Electronic Devices & Storage Corporation
    TMPM4NQF10FG Toshiba Electronic Devices & Storage Corporation Arm Cortex-M4 processor with FPU Core Based Microcontroller/32bit/P-LQFP144-2020-0.50-002 Visit Toshiba Electronic Devices & Storage Corporation

    FLOATING-POINT REPRESENTATION OF NUMBERS Datasheets Context Search

    Catalog Datasheet MFG & Type Document Tags PDF

    FLO32

    Abstract: FLO24 FPA24 FPD32 AN575 IEEE754 IEEE-754 FPM32 NRM32 integer and floating point numbers
    Text: IEEE 754 Compliant Floating-Point Routines AN575 IEEE 754 Compliant Floating-Point Routines Author: Frank Testa INTRODUCTION Using biased exponents permits comparison of exponents through a simple unsigned comparator, and further results in a unique representation of zero given by


    Original
    AN575 PIC16/17 FLO32 FLO24 FPA24 FPD32 AN575 IEEE754 IEEE-754 FPM32 NRM32 integer and floating point numbers PDF

    00FF

    Abstract: ADSP-2100 IEEE-754 Floating-Point Arithmetic
    Text: Floating-Point Arithmetic 3 3 3.1 OVERVIEW In fixed-point number representation, the radix point is always at the same location. While this convention simplifies numeric operations and conserves memory, it places a limit on the magnitude and the precision of


    Original
    PDF

    ZAP000101-1201

    Abstract: ZAP0002 ZAP0003 ZAP0004
    Text: ZiLOG Application Principle Floating Point Routines ZAP000101-1201 Author: Andrei Kovalev General Overview Arithmetic routines are common in a wide range of embedded applications. From home HVAC systems to industrial process parameter measurement, a certain amount of precise computation is always necessary. 8-bit controllers normally offer fixed-point arithmetic and logic units ALUs and typically compute using only whole numbers. However,


    Original
    ZAP000101-1201 ZAP000101-1201 ZAP0002 ZAP0003 ZAP0004 PDF

    C-15

    Abstract: C-16 DSP96002 DSP96002 fft
    Text: APPENDIX C IEEE ARITHMETIC C.1 FLOATING-POINT NUMBER STORAGE AND ARITHMETIC C.1.1 General The IEEE standard for binary floating point arithmetic provides for the compatibility of floating-point numbers across all implementations which use the standard by defining bit-level encoding of floating-point numbers.


    Original
    32-bit DSP96002 C-15 C-16 DSP96002 fft PDF

    D-10

    Abstract: D-12 D-16 DSP96002 3F800000 DSP96002 APPLICATIONS DSP96002 fft
    Text: APPENDIX D D.1 FLOATING-POINT NUMBER STORAGE AND ARITHMETIC D.1.1 General The IEEE standard for binary floating point arithmetic provides for the compatibility of floating-point numbers across all implementations which use the standard by defining bit-level encoding of floating-point numbers.


    Original
    32-bit DSP96002 D-10 D-12 D-16 3F800000 DSP96002 APPLICATIONS DSP96002 fft PDF

    ZAP0001

    Abstract: ZAP000301-1201
    Text: ZiLOG Application Principle Floating Point Multiplication ZAP000301-1201 Author: Andrei Kovalev General Overview Arithmetic routines are common in a wide range of embedded applications. From home HVAC systems to industrial process parameter measurement, a certain amount of precise computation is always necessary. 8-bit controllers normally offer fixed-point arithmetic and logic units ALUs and typically compute using only whole numbers. However,


    Original
    ZAP000301-1201 ZAP0001 ZAP000301-1201 PDF

    ZAP0001

    Abstract: ZAP000201-1201
    Text: ZiLOG Application Principle Floating Point Addition/Subtraction ZAP000201-1201 Author: Andrei Kovalev General Overview Arithmetic routines are common in a wide range of embedded applications. From home HVAC systems to industrial process parameter measurement, a certain amount of precise computation is always necessary. 8-bit controllers normally offer fixed-point arithmetic and logic units ALUs and typically compute using only whole numbers. However,


    Original
    ZAP000201-1201 ZAP0001 ZAP000201-1201 PDF

    ZAP0001

    Abstract: ZAP000401-1201
    Text: ZiLOG Application Principle Floating Point Division ZAP000401-1201 Author: Andrei Kovalev General Overview Arithmetic routines are common in a wide range of embedded applications. From home HVAC systems to industrial process parameter measurement, a certain amount of precise computation is always necessary. 8 bit controllers normally have fixed point arithmetic and logic functionality and originally dealt with whole numbers only. It is convenient


    Original
    ZAP000401-1201 ZAP0001 ZAP000401-1201 PDF

    TN0002

    Abstract: TN0004 IEEE 754 ieee floating point TN0001
    Text: Technical Note Floating Point Routines TN000101-0603 General Overview Arithmetic routines are common in a wide range of embedded applications. From home HVAC systems to industrial process parameter measurement, a certain amount of precise computation is always necessary. 8-bit controllers normally offer fixed-point arithmetic and


    Original
    TN000101-0603 TN0002 TN0004 IEEE 754 ieee floating point TN0001 PDF

    freescale semiconductor body marking

    Abstract: MPC603RRX200LC MPC603R MPC603RRX166LC MPC603RRX233LC MPC603RRX266LC MPC603RRX300LC MPE603RRX166LC MPE603RRX200LC MPE603RRX233LC
    Text: Freescale Semiconductor, Inc. MPC603r_C PNS 980612 Motorola Part Numbers Affected: MPE603RRX166LC MPC603RRX166LC MPE603RRX200LC MPC603RRX200LC MPE603RRX233LC MPC603RRX233LC MPE603RRX266LC MPC603RRX266LC MPE603RRX300LC MPC603RRX300LC MPC603RRX200TC MPC603RRX266TC


    Original
    MPC603r MPE603RRX166LC MPC603RRX166LC MPE603RRX200LC MPC603RRX200LC MPE603RRX233LC MPC603RRX233LC MPE603RRX266LC MPC603RRX266LC MPE603RRX300LC freescale semiconductor body marking MPC603RRX200LC MPC603RRX166LC MPC603RRX233LC MPC603RRX266LC MPC603RRX300LC MPE603RRX166LC MPE603RRX200LC MPE603RRX233LC PDF

    Digit Analog-to-Digital

    Abstract: FXD3216U TM 1628 Datasheet P16C74a AN575 AN617 32-bit microcontrollers 200B AN670 INT3232
    Text: M AN670 Floating Point to ASCII Conversion Authors: Table 2 depicts Microchip’s 32-bit floating point register RAM usage. The bit labeled “S” is the sign bit. These registers are collectively called AARG. The floating point routines require that the arguments be put in


    Original
    AN670 32-bit AN00670A-page Digit Analog-to-Digital FXD3216U TM 1628 Datasheet P16C74a AN575 AN617 32-bit microcontrollers 200B AN670 INT3232 PDF

    FXD3216U

    Abstract: AN617 AN575 INT3232 16C74A math16 AN61 200B AN670 PIC14C000
    Text: M AN670 Floating Point to ASCII Conversion Authors: Table 2 depicts Microchip’s 32-bit floating point register RAM usage. The bit labeled “S” is the sign bit. These registers are collectively called AARG. The floating point routines require that the arguments be put in


    Original
    AN670 32-bit FXD3216U AN617 AN575 INT3232 16C74A math16 AN61 200B AN670 PIC14C000 PDF

    AN575

    Abstract: AN617 AN670 FXD3216U INT3232 PIC14C000 FLOATING POINT Co Processor P16C74a
    Text: M AN670 Floating Point to ASCII Conversion Authors: Table 2 depicts Microchip’s 32-bit floating point register RAM usage. The bit labeled “S” is the sign bit. These registers are collectively called AARG. The floating point routines require that the arguments be put in


    Original
    AN670 32-bit D-81739 D-82152 DS00670B-page AN575 AN617 AN670 FXD3216U INT3232 PIC14C000 FLOATING POINT Co Processor P16C74a PDF

    P16C74a

    Abstract: AN575 AN617 AN670 FXD3216U INT3232 PIC14C000
    Text: M AN670 Floating Point to ASCII Conversion Authors: Table 2 depicts Microchip’s 32-bit floating point register RAM usage. The bit labeled “S” is the sign bit. These registers are collectively called AARG. The floating point routines require that the arguments be put in


    Original
    AN670 32-bit D-81739 P16C74a AN575 AN617 AN670 FXD3216U INT3232 PIC14C000 PDF

    FP24.A16

    Abstract: FLO1624 P16C711 MATH17 math16 AN575 Datasheet Library 1979 16C556 P16C73A PIC16CXX
    Text: M AN575 IEEE 754 Compliant Floating Point Routines Author: Frank J. Testa FJT Consulting INTRODUCTION This application note presents an implementation of the following floating point math routines for the PICmicro microcontroller families: • • • •


    Original
    AN575 scien200 DS00575B-page FP24.A16 FLO1624 P16C711 MATH17 math16 AN575 Datasheet Library 1979 16C556 P16C73A PIC16CXX PDF

    ieee floating point multiplier vhdl

    Abstract: vhdl code of floating point adder vhdl code for floating point adder vhdl code for floating point subtractor xilinx vhdl code for floating point square root vhdl code for floating point multiplier inverse trigonometric function vhdl code ieee floating point vhdl IEEE754 5 bit binary multiplier using adders
    Text: FPGA Floating Point Datapath Compiler Martin Langhammer Altera UK Holmer’s Farm Way High Wycombe, Bucks, UK HP12 4XF [email protected] Tom VanCourt Altera Corporation 101 Innovation Dr. San Jose CA 95134 [email protected] Abstract 2. Floating Point Datapath Synthesis


    Original
    PDF

    FP24.A16

    Abstract: 16CR83 icepic 16cxx MATH17 P16CR84 16Cxx INT2416 16C65A 0x95F8 FPA24
    Text: M AN575 IEEE 754 Compliant Floating Point Routines Author: Frank J. Testa FJT Consulting INTRODUCTION This application note presents an implementation of the following floating point math routines for the PICmicro microcontroller families: • • • •


    Original
    AN575 D-81739 FP24.A16 16CR83 icepic 16cxx MATH17 P16CR84 16Cxx INT2416 16C65A 0x95F8 FPA24 PDF

    16Cxx

    Abstract: p16c FP24.A16 P16CR84 75419 AN575 IEEE754 PIC16 PIC17 GA 88
    Text: M AN575 IEEE 754 Compliant Floating Point Routines Author: Frank J. Testa FJT Consulting INTRODUCTION This application note presents an implementation of the following floating point math routines for the PICmicro microcontroller families: • • • •


    Original
    AN575 16Cxx p16c FP24.A16 P16CR84 75419 AN575 IEEE754 PIC16 PIC17 GA 88 PDF

    fft algorithm

    Abstract: 8point fft matlab fft implementation on tms320c55x Block Floating Point Implementation SPRA948 cfft32 radix-2 TMS320C55X TMS320C5000 5.1 audio processor using matlab
    Text: Application Report SPRA948 − September 2003 A Block Floating Point Implementation for an N-Point FFT on the TMS320C55x DSP David Elam and Cesar Iovescu TMS320C5000 Software Applications ABSTRACT A block floating-point BFP implementation provides an innovative method of floating-point


    Original
    SPRA948 TMS320C55x TMS320C5000 TMS320C55x fft algorithm 8point fft matlab fft implementation on tms320c55x Block Floating Point Implementation cfft32 radix-2 5.1 audio processor using matlab PDF

    AN701

    Abstract: 3F80 0M22
    Text: MICROCONTROLLER PRODUCTS AN701 SP floating point math with XA Author: Santanu Roy Philips Semiconductors 1995 Jul 28 Philips Semiconductors Application note SP floating point math with XA AN701 Author: Santanu Roy, MCO Applications Group, Sunnyvale, California


    Original
    AN701 AN701 3F80 0M22 PDF

    AN701

    Abstract: ieee 32 bit floating point multiplier 3F80
    Text: MICROCONTROLLER PRODUCTS AN701 SP floating point math with XA Author: Santanu Roy Philips Semiconductors 1995 Jul 28 Philips Semiconductors Application note SP floating point math with XA AN701 Author: Santanu Roy, MCO Applications Group, Sunnyvale, California


    Original
    AN701 AN701 ieee 32 bit floating point multiplier 3F80 PDF

    MPC603RRX200LC

    Abstract: XPC603 MPC603RRX166LC MPC603RRX200TC MPC603RRX233LC MPC603RRX266LC MPC603RRX300LC MPE603RRX166LC MPE603RRX200LC MPE603RRX233LC
    Text: MPC603r_C PNS 980612 Freescale Semiconductor, Inc. Motorola Part Numbers Affected: MPE603RRX166LC MPC603RRX166LC MPE603RRX200LC MPC603RRX200LC MPE603RRX233LC MPC603RRX233LC MPE603RRX266LC MPC603RRX266LC MPE603RRX300LC MPC603RRX300LC MPC603RRX200TC MPC603RRX266TC


    Original
    MPC603r MPE603RRX166LC MPC603RRX166LC MPE603RRX200LC MPC603RRX200LC MPE603RRX233LC MPC603RRX233LC MPE603RRX266LC MPC603RRX266LC MPE603RRX300LC MPC603RRX200LC XPC603 MPC603RRX166LC MPC603RRX200TC MPC603RRX233LC MPC603RRX266LC MPC603RRX300LC MPE603RRX166LC MPE603RRX200LC MPE603RRX233LC PDF

    mpc603rrx200lc* motorola

    Abstract: MPC603RRX200LC MPC603RRX166LC MPC603RRX200TC MPC603RRX233LC MPC603RRX266LC MPC603RRX300LC MPE603RRX166LC MPE603RRX200LC MPE603RRX233LC
    Text: MPC603r_C PNS 980612 ª Motorola Part Numbers Affected: MPE603RRX166LC MPC603RRX166LC MPE603RRX200LC MPC603RRX200LC MPE603RRX233LC MPC603RRX233LC MPE603RRX266LC MPC603RRX266LC MPE603RRX300LC MPC603RRX300LC MPC603RRX200TC MPC603RRX266TC Application-SpeciÞc Information


    Original
    MPC603r MPE603RRX166LC MPC603RRX166LC MPE603RRX200LC MPC603RRX200LC MPE603RRX233LC MPC603RRX233LC MPE603RRX266LC MPC603RRX266LC MPE603RRX300LC mpc603rrx200lc* motorola MPC603RRX200LC MPC603RRX166LC MPC603RRX200TC MPC603RRX233LC MPC603RRX266LC MPC603RRX300LC MPE603RRX166LC MPE603RRX200LC MPE603RRX233LC PDF

    AN701

    Abstract: 3F80 EXCESS-127
    Text: Philips Semiconductors Application note SP floating point math with XA AN701 Author: Santanu Roy, MCO Applications Group, Sunnyvale, California IEEE SINGLE PRECISION FLOATING POINT ARITHMETIC WITH XA SIGN 1-bit This application note is intended to implement Single Precision


    Original
    AN701 0xff000000) 0x00ff0000) 0x0000ff00) 0x000000ff; AN701 3F80 EXCESS-127 PDF